会议详情 |
推荐会议:2024年电力信息通信与网络安全学术会议暨IEEE PES电力系统通信与网络安全技术委员会(中国)年会
发票类型:增值税普通发票
参会凭证:现场凭电话姓名参会
天士力医药集团股份有限公司
会议简介:
2018第四届电气工程与工业工程国际会议为广大从事电气工程与工业工程等相关领域的研究学者、专家提供交流平台。会议组委会诚邀全球相关领域的学者、专家参加此次国际会议,就电气工程与工业工程为主题的相关热点问题进行探讨、交流,共同促进全球电气工程与工业工程的发展。
会议主题:电气工程与信息工程
会议时间:2018年12月15-17日
会议地点:中国,西安
论文出版:
所有的录用论文将由 Science Publishing Group出版,录用文章出版于如下期刊:
Journal of Electrical and Electronic Engineering (JEEE)
ISSN Print: 2329-1613 ISSN Online: 2329-1605
Automation, Control and Intelligent Systems (ACIS)
ISSN Print: 2328-5583 ISSN Online: 2328-5591
International Journal of Mechanical Engineering and Applications (IJMEA)
ISSN Print: 2330-023X ISSN Online: 2330-0248
International Journal of Intelligent Information Systems (IJIIS)
ISSN Print: 2328-7675 ISSN Online: 2328-7683
Science Discovery (SD)
ISSN Print: 2331-0642 ISSN Online: 2331-0650
(以上合作期刊可被中知网及部分国外的检索机构检索,如WorldCat, Electronic Journals Library, Zeitschriftendatenbank, EZB, Academickeys, ResearchBib, Polish Scholarly Bibliography, Wissenschaftszentrum Berlin等)
会后每篇文章将寄送两本纸质版给国内投稿作者。
上海来溪会务服务公司,是一家专业的会务服务公司。以举办国际学术会议为主要业务,涉及会议推广、会议合作、会议组织等。旗下huiyi123.net平台致力于国际学术会议服务,旨在为国内外科研机构、科研团队提供学术会议交流,学术论文出版,酒店预订等会务服务。
12月15日 | 11:00-17:00 | 报到 |
12月16日 | 09:00-12:00 | 特邀嘉宾演讲 |
12:00-14:00 | 午餐 | |
14:00-17:30 | 口头报告 | |
18:30-20:00 | 晚宴 | |
12月17日 | 08:00-17:00 | 西安一日游 |
ICEEIE2018演讲嘉宾信息如下:
Dr. Mohd Afizi Mohd Shukran, Associate Professor
Faculty of Science and Defence Technolog, Department of Computer Science, Universiti Pertahanan Nasional Malaysia, Malaysia
Biography: Dr. Mohd Afizi Mohd Shukran ,currently an Associate Professor in Department of Computer Science in Universiti Pertahanan Nasional Malaysia (UPNM). He has several research experiences including 60 published journals and over 40 proceedings. Also, he has several computer science professional certifications such as MCSE, MCSA and ENSA. About education backgrounds, he obtained the bachelor degree in Information System from Melbourne University, Australia. Then he got his Master of Information Technology and Doctor of Philosophy (PhD) in Sydney University, Australia.
Topic: Swarm Intelligence in Computer Network
Abstract: Data classification involves solving problems by analyzing data already present in databases. Due to the explosive growth of both business and scientific databases, extracting efficient classification rules from such databases has become an important task. This is because classification technique is an important form of knowledge extraction and can help to make key decisions. Nevertheless, classification technique can be improved by integrating the latest technology, namely, Swarm Intelligence. This study proposes two types of classification techniques: Artificial Bee Colony, and Intelligent Dynamic Swarm, which are both based on Swarm Intelligence. This is because Swarm Intelligence has the capability to adapt well in changing environments and is immensely flexible and robust. The first swarm based classifier involves using the advantages of Artificial Bee Colony as an optimization tool to do the data classification. This proposed Artificial Bee Colony based classifier has been implemented to the Anomaly based Network Intrusion Detection System. To our knowledge, it is the first time that the Artificial Bee Colony technique has been applied to solve the network intrusion detection problem. Another swarm based classifier that has been proposed in this study is a novel Intelligent Dynamic Swarm, which is based on Particle Swarm Optimization. Unlike a conventional Particle Swarm Optimization algorithm, this novel algorithm can directly cope with discrete variables. In addition, Intelligent Dynamic Swarm can successfully avoid premature convergence, which is considered a serious drawback of traditional Particle Swarm Optimization. These two proposed new swarm based data classification algorithms have been evaluated using the UCI data set, KDD-99 datasets developed by MIT Lincoln Labs, and the pre-processed image data. The experimental results showed that both the Anomaly based Network Intrusion Detection System and Intelligent Dynamic Swarm are robust and able to achieve high classification accuracy in a changing environment within the data instances. Therefore, both proposed classifiers can provide a promising direction for solving complex problems that may not be solved by traditional approaches.
Dr. Lazim Abdullah, Professor
School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, Malaysia
Biography: Dr. Lazim Abdullah is a professor of computational mathematics at the School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu. He holds a B.Sc (Hons) in Mathematics from the University of Malaya, Kuala Lumpur in June 1984 and the M.Ed in Mathematics Education from University Sains Malaysia, Penang in 1999. He received his Ph.D. in Information Technology Management from the Universiti Malaysia Terengganu in 2004. His research focuses on the mathematical theory of fuzzy sets, decision making methods and its applications to social ecology, environmental sciences, health sciences, socio-economics, and technology management and manufacturing engineering. His research findings have been published in over three hundred publications, including refereed journals, conference proceedings, chapters in books, monographs and research books. Currently, he is a member of editorial boards of several international journals related to computing and applied mathematics. He is also a regular reviewer for international impact factor journals, member of scientific committees of several symposia and conferences at national and international levels. Dr Abdullah is an associate member of IEEE Computational Intelligence Society, and a member of the International Society on Multiple Criteria Decision Making.
Topic: The Use of Intuitionistic Fuzzy DEMATEL in Developing Cause and Effect Criteria in Sub-Contractors Selection
Abstract: Subcontractors usually help general contractors to overcome problems that related to the need for special expertise, limitation in finances and shortage in resources. However, selecting a good sub-contractor is not a trivial task as many criteria need to be wisely categorized. The purpose of this paper is to develop groups of causes and effect criteria of sub-contractors’ selection using Intuitionistic Fuzzy DEMATEL method. A group of experts’ opinions were sought to provide linguistic evaluations regarding the degree of influence between criteria in sub-contractors selection. Matlab software was used to assist in developing causal diagram where groups of cause and effect criteria in sub-contractors selection are identified. The results show that four criteria are grouped as cause criteria while six criteria are grouped as effect criteria. The result also suggests that the criteria ‘experience’ is the main cause that influences the selection of subcontractors. The categorization of cause and effect criteria would be a great significance for the practical implementation of the sub-contractors selection.
参会费用(只参会不投稿)
票务类别 |
包含内容 |
2018年11月25日前缴费 |
2018年11月25日后缴费及现场缴费 |
---|---|---|---|
C票 |
参会+会议资料+礼品+旅游 |
1600元 |
1800元 |
D票 |
参会+会议资料+礼品+旅游 |
2000元 |
2200元 |
酒店地址:陕西省西安市南二环东段398号
以下为酒店房价供您参考:
酒店协议价(包含早餐)
房型 | 参考房价 |
传统双床房(含双早) | 480元/晚 |
传统大床房(含单早) | 480元/晚 |
交通指南:西安大雁塔假日酒店途经公交车:214路,710路,二环1号线,701路,24路,118路
西安大雁塔假日酒店地理位置优越,位于雁塔区南二环,距离西安咸阳机场40公里,临近长安大学和小寨购物商区。靠近酒店的体育场地铁站或是本地区充足的出租车便利于前往城市的其它部分。 西安大雁塔假日酒店的客房均配有液晶电视,卫星频道,写字台和按人体工程学设计的座椅,以及高速互联网接口。酒店的商务中心将热忱的协助您所有的打印、传真、复印、邮件和IT服务等秘书性工作。在酒店2个宴会厅和6 间会议室中举办活动,我们的大宴会厅可轻松容纳360人(宴会形式)。 无论是董事会议,温馨的香槟招待酒会或是盛大的婚礼,西安大雁塔假日酒店的宴会团队还可以定制会议设施以满足您的活动的需求。 前往西安大雁塔假日酒店700平米现代的健身中心健身或游泳,焕发身心活力,或是到我们静谧的水疗中心体验一次按摩护理。光顾餐厅品味厨艺大师的创意杰作,或是享用全日营业的咖啡厅和客房内订餐服务的美味佳肴。
相关会议
2024-12-05杭州