会议详情 |
推荐会议:2025国际石油石化技术会议暨展会
发票类型:增值税普通发票 增值税专用发票
随着数字医学和医学图像信息学的发展,从医学图像中挖掘图像特征、解析临床信息,逐渐成为医学领域重要研究方向。通过对图像数据特征的深层次挖掘,医学图像能提供更多肉眼不能识别的信息,可用于指导临床决策。2012 年,影像组学(radiomics)概念的提出,影像组学分析流程主要包括:图像获取、病灶分割、特征提取和筛选、模型构建和临床信息解析等;其研究涉及医工交叉学科, 需要医学和工科紧密合作,共同解决医生们在临床实践中提出的实际问题。
中国管理科学研究院职业资格认证培训中心特举办“医学影像组学人工智能案例结合实训班”。本次对前沿的影像组学及人工智能案例结合方法及应用进行了全面的讲解,帮助学员掌握影像组学临床和科研工作的开展方法和实现路径。
2、结合具体临床实际案例,进行案例讲解和专题讨论,有效的提升学员解决临床和科研问题的能力。
3、《癌症的生存率预测》、《乳腺癌识别》、《COVID-19 新冠肺炎识别》、《人脑肿瘤分割》、
《皮肤疾病病灶区域分割》等经典案例实践训练。
二、时间地点:
(第一天软件辅助安装,授课三天)
路径:任务→案例指向→问题分类→模型匹配→对比实验→效果测试→半开放式开发→升级、迁移
多任务适配: |
|
|
多算法平台:
|
|
|
多样化数据全适用: |
|
|
应用一站式平台:
|
|
|
半开放式开发: |
|
|
以《乳腺癌数据分析及自动诊断》数据为例,进行结构化数据的介绍。其数据的典型特点为:
1.结构化数据的处理方法。
1.如何快速读取结构化数据。
2.使用pandas对数据快速进行统计学分析。
2.传统机器学习算法对问题进行建模。
1.基于scikit-learn中的算法,例如LR、SVM、RF、GBDT等常见的监督算法。
2.基于XGBoost的建模方法。tree_method、max_depth等重要参数的介绍。
3.基于LightGBM的建模方法。eta、objective等重要参数介绍。
3.案例上手练习:基于LightGBM的机器学习建模方法。
以《乳腺癌识别》以及《COVID-19新冠肺炎识别》为例,介绍何如从CT扫描数据中识别指定疾病。
1.图像分类网络详解。
1.面向精度的图像识别网络,LeNet、AlexNet、VGG、Inception、ResNet等。
2.面试速度的图像识别网络,MobileNetV1、MobileNetV2、ShuffleNet等。
2.CT数据的预处理。
1.训练数据的如何进行划分,如何进行裁剪。
2.为应对数据量不足的情况,在训练模型的过程中如何对数据进行实时的数据增强。
3.案例上手练习:基于CNN的图像分类方法,乳腺癌识别或者COVID-19新冠肺炎识别二选一。
1.数据集如何使用。
2.自己的数据如何适配到给定的算法。
3.其它可能扩展的任务场景介绍,例如肝炎CT数据识别等。
以《人脑肿瘤分割》以及《皮肤疾病病灶区域分割》为例,介绍如何使用分割算法将制定区域从图像中分割出来。
1.FCN,第一个基于全卷积的图像分割算法。
2.DeepLab V1-V3系列算法介绍。
3.UNet及其衍生算法在图像分割,尤其是医学影像数据的分割算法中的应用。
1.数据集介绍,分割算法依赖的数据包括那几个重要的部分。
2.如何对分割数据形成对应的mask。
1.如何将自己的数据适配到UNet算法。
2.其他可能扩展到的分割场景。
3.如何使用已经训练的模型,对未知的数据进行预测。
四、课程讲解
一、Onekey中的影像组学案例剖析 |
1.What,是什么。影像组学中的分类问题案例介绍 2.使用Onekey平台解决新冠肺炎识别任务(What)。
3.Where,在那。影像组学中的感兴趣区域检测案例介绍 4.使用Onekey平台解决肺部CT数据中肺器官检测。 5.Which,哪个是。影像组学中不规则区域分割案例介绍 6.使用Onekey平台解决肺部CT数据中肺器官检测。 |
||
二、Onekey平台的标注数据 |
|
|
|
三、案例演示及实操 |
1.肺部疾病诊断 2.基因突变预测 3.眼底疾病智能识别 4.黑色素瘤诊断 5.肺炎类型诊断 6.预后模型简历及验证 7.器官识别 8.神经元结构的分割 |
9.胃肠镜高分化癌 10.器官分割 11.预警量表诊断评估 12.癌症预后分析 13.蛋白质遗传组学分析 14.CT影像辅助诊疗 15.多模态任务模型构建 |
|
四、算法模型调优 |
|
|
|
案例:模型超参数调优以及迁移学习 |
|||
五、如何搭建高性能OnekeyAI实验环境配 |
|
|
|
案例:搭建并配置好人工智能实验环境 |
|||
六、分类影像学 |
|
||
案例:实现一个新的模型并添加入Onekey平台 |
|||
七、分割影像学 |
|
||
案例:Onekey平台中皮肤病病灶区域分割中模型选择 |
|||
八、人工智能与影像组学综述 |
|
|
|
九、影像组学SCI论文、专利、基金申请写作思路重要内容 |
|
|
|
案例:病理基因的修正案例 |
|||
十、数据处理Python入门指导 |
|
|
|
案例:使用python处理dicom类型CT数据 |
|||
十一、Pytorch入门 |
|
|
|
每人4200元(含培训费、证书费、资料费、 实验平台模型集成费)
六、颁发证书:参加相关培训并通过考试的学员,可以获得:
由中国管理科学研究院职业资格认证培训中心颁发的《影像组学技术工程师》(高级)专业技能资格证书,官方网站查询,该证书可作为有关单位专业技术人员能力评价、考核和任职的重要依据。
相关会议
2025-03-24北京