会议详情 |
推荐会议:人工智能背景下外语教育改革与发展论坛
发票类型:增值税普通发票 增值税专用发票
各有关院校:
国家十三五规划纲要明确提出“实施国家大数据战略,推进数据资源开放共享”,为我国在大数据领域的未来发展绘制了宏伟的蓝图,开启了我国大数据发展的新时代。教育部《高等学校人工智能创新行动计划》及国务院颁布的《新一代人工智能发展规划》,责成科技司、基教司、职成司、高教司、地方各级教育行政部门大力推动人工智能、大数据等新技术在教育教学中的深入应用,推进信息技术与高等教育教学深度融合。从发布对人工智能、大数据等新技术与教育结合的指导性文件到直接扶持建设相关教学项目,为高校进行教学改革和升级教学手段和方式指明了新的方向。
大数据及人工智能产业的发展对人才提出了新的需求,国内各高校在积极进行学术研究的同时,已经将大数据与人工智能教育纳入培养体系。为帮助高校适时调整课程体系、继续深化教学改革,指导数据智能学科建设和跨学科人才培养,进一步提升教学能力和科研能力,特举办“全国高校大数据与人工智能双师型骨干师资研修班”,现将有关通知如下:
培训目标及特点
1、为参训教师提供大数据教学领域全套工具、服务、平台、数据、案例及在线课程等资源,为在高校开展大数据教育工作、培养大数据人才的教师提供深入培训及交流机会。后续将为学校开展大数据相关课程设计与实践提供完整的解决方案和全方位授课支持。
2、本次培训采用线上线下结合的方式,基础课程放在线上可以随时随地不限次学习、巩固夯实专业基础;线下课程采用案例实战教学并提供全程课程录屏视频,既完善了全体系培训课程又最大程度的提升线下集中培训的课程品质,让参训学员一次学习最大限度的获取收益。
3、本次培训将系统讲授大数据人工智能课程知识体系、授课方法、实验环境搭建、基础编程、实训实验室建设、高校课程公共服务平台资源使用指南等方面的内容,使学员能够深入了解当下大数据与人工智能技术在世界范围内的最新发展水平,理解大数据与人工智能技术在当代各种相关产品中的应用,并掌握该领域最关键技术的原理,以及技术应用过程,旨在帮助参加培训的教师快速建立对相关课程的整体性认识,为高校备课和顺利开课、科研和项目开发工作打下坚实基础。
4、本次培训课程内容以“鱼骨教学法”进行编排设计,所有课程将围绕真实企业项目展开,强调培训的实战性和真实性。让教师亲身接触企业一线工作场景,充分提升教师的实践教学能力。本次学习为每位参训学员提供系统的院校大数据及人工智能专业建设方案,帮助各高校在专业课程体系建设提供全方位、强有力的教学资源支持。
5、本次课程通过讲授、研讨、动手实操,行业名企实地参观考察多种灵活有效的教学方式,加强大数据专业师资队伍的建设,提升教师教学创新思维。了解大数据及人工智能岗位目前的就业形势、前景及所需相关技能,了解企业实际需求, 并参与一个实际项目的全过程,将培训转化成教学成果,运用到教师自己后续的教学当中去,全部提升教师实践教学能力。
6、了解高校大数据人工智能专业的教材、实验室、实训室建设内容、产品、科研和创新创业最新讯息,本次学习为每位参训学员提供大数据教学实训平台试用账号、课程建设与程序设计的相关资源,丰富已开设大数据专业院校课程体系。
注:所有学员自带笔记本电脑(Windows7或以上操作系统(64位)、4G+内存)、紧跟老师上课过程操作练习,完全学会经典案例开发技术,学会使用以上工具软件开发应用。
研修对象
各高等院校大数据、人工智能相关学科、计算机、网络通信、自动化、电子工程、数理统计等专业的科研、教学带头人、骨干教师、博士生、硕士生、本科生、大专生;
从事计算机、云计算、大数据、人工智能、互联网等相关领域项目的科研院所的项目负责人、科研人员、工程技术人员等。
时间地点
时间:2020年1月11-16日(1月11日全天报到)
地点: 广州
中国高校大数据教育创新联盟是针对全国高校开展有关大数据技术、数据科学及智能科学相关的课程开发、共享等相关活动,促进联盟成员师生大数据相关教学活动,实现高校大数据产业“产”、“学”、“研”、“创”的全面发展,切实推进高校师生大数据领域科研创新、成果转化、技术应用的能力的一个公益性社会组织。
广州泰迪智能科技有限公司泰迪科技是一家从事大数据挖掘基础研究、培训、咨询服务及应用开发的高科技企业,基于数据挖掘算法标准接口,可快速实现大数据挖掘应用的集成开发。泰迪科技的主要产品有大数据挖掘基础平台(TIPDM)、企业智能预测开发平台、数据挖掘建模仿真教学套件、餐饮智能服务平台等产品
第一部分:线上实习(基础部分共计35个课时) |
学习时间 |
报名后即可开始学习 |
||
学习地址https://edu.tipdm.org/course/7(Python快速入门),备注:该部分内容是前导课,请一定提前学习。 |
||||
课程模块 |
内容 |
课时 |
||
Python基础 |
1 准备工作 1.1 认识Python 1.2 搭建Python环境 1.3 安装PyCharm并创建一个应声虫程序 2 Python基础知识 2.1 掌握Python固定语法 2.2 创建字符串变量并提取里面的数值 2.3 计算圆形的各参数 3 Python数据结构 3.1 创建一个列表(list)并进行增删改查操作 3.2 转换一个元组(tuple)并进行取值操作 3.3 创建一个字典(dict)并进行增删改查操作 3.4 将两个列表转换为集合(set)并进行集合运算 4程序流程控制语句 4.1实现考试成绩划分 4.2实现一组数的连加与连乘 4.3使用冒泡排序法排序 4.4实训(猜数字游戏) 5 函数 5.1自定义函数实现输出方差 5.2使用匿名函数添加列表元素 5.3存储并导入函数模块 6 面向对象 6.1 认识面向对象编程 6.2 创建Car类 6.3 创建Car对象 6.4 迭代Car对象 6.5 产生Land_Rover对象(子类) 7 文件基础 7.1 认识文件 7.2 读取txt文件中的数据 7.3 保存数据为csv格式文件 7.4 认识os模块 |
15 |
||
Python数据分析与应用 |
1 Python数据分析概述 1.1认识数据分析 1.2熟悉Python数据分析的工具 1.3安装Python3的Anaconda发行版 1.4掌握Jupyter Notebook常用功能 2 NumPy数值计算基础 2.1认识NumPy数组对象ndarray 2.2认识NumPy矩阵与通用函数 2.3利用NumPy进行统计分析 3 Matplotlib数据可视化基础 3.1了解绘图基础语法与常用参数 3.2分析特征间的关系 3.3分析特征内部数据分布与分散状况 4 Pandas统计分析基础 4.1读写不同数据源的数据 4.2掌握DataFrame的常用操作 4.3转换与处理时间序列数据 5 使用Pandas进行数据预处理 5.1合并数据 5.2清洗数据 5.3标准化数据 5.4转换数据 |
20 |
||
第二部分:线下实战(实部分共计40个课时) |
学习时间 |
2020年1月12-16日 |
||
日期 |
内容 |
时间 |
||
第一天 |
报到 |
全天 |
||
第二天 |
大数据人才培养方案/课程设置分享 |
09:00-09:30 |
||
|
实战任务说明及启动 |
09:30-09:45 |
||
|
Python数据分析与处理实训 实训1开始了解你的数据-餐饮数据探索 实训2数据过滤与排序-欧洲杯数据与分析 实训3数据分组-酒类消费数据探索 实训4Apply应用-犯罪数据探索与处理 实训5数据框合并综合应用 实训6时间序列数据处理-股价数据分析与处理 实训7统计分析-招聘数据探索与分析 |
09:45-12:00 14:00-17:00 |
||
第三天 |
机器学习算法挑战赛与教学转化 1 机器学习介绍 1.1有监督学习:分类、回归 1.2无监督学习:聚类 1.3半监督学习 1.4强化学习 2 算法挑战赛:能力提升与教学转化 2.1赛题分析 2.2数据准备 2.3数据预处理 2.4特征工程 2.5使用scikit-learn构建模型 2.6集成学习 2.7成果提交 2.8案例总结与教学转化 |
09:00-12:00 14:00-17:00 |
||
第四天 |
Python网络爬虫实战 1 Python爬虫环境与爬虫简介 1.1认识爬虫 1.2认识反爬虫 1.3配置Python爬虫环境 2 网页前端基础 2.1认识Python网络编程 2.2认识HTTP协议 3 简单静态网页爬取 3.1实现HTTP请求 3.2解析网页 3.3数据存储 4 常规动态网页爬取 4.1逆向分析爬取动态网页 4.2使用Selenium库爬取动态网页 4.3存储数据至MongoDB数据库 5 模拟登录 5.1使用表单登录方法实现模拟登录 5.2使用Cookie登录方法实现模拟登录 6 终端协议分析 7 项目实战:大数据岗位招聘数据爬取及分析 |
09:00-12:00 14:00-17:00 |
||
第五天 |
人工智能应用实战 1 TensorFlow安装与入门 1.1 TensorFlow环境搭建 1.2 TensorFlow计算模型性:计算图 1.3 TensorFlow数据模型:张量Tensor 1.4 TensorFlow运行模型:会话 2 TensorFlow数据类型 2.1 常量、变量及其构建 2.2 TensorFlow实现线性回归模型 2.3 操作:TensorFlow实现鸢尾花分类 3案例一:手写数字识别 3.1 图片预处理 3.2 占位符:placeholder 3.3 操作:利用TensorFlow实现SoftMax网络对手写数字识别 4案例二:基于深度神经网络的车牌号识别 4.1数据读取 4.2定位并截取车牌图片 4.3灰度处理车牌图片 4.4降噪处理车牌图片 4.5车牌分割 4.6卷积神经网络(CNN)的处理层构建 4.7定义损失函数、优化器 4.8计算正确率 4.9执行训练并保存模型 4.10模型调用并测试评估 |
09:00-12:00 14:00-17:00
|
||
第六天 |
大数据企业参观访学习 |
主讲嘉宾及师资介绍
张良均 广东工业大学硕士研究生导师,华南师范大学数学科学学院兼职教授,科技部高技术研究发展中心国家科技专家库专家,中国信访大数据学术与应用研究联盟副理事长,广东省工业与应用数学学会常务理事,湖北省工业与应用数学学会理事。近5年,在国内外重要学术刊物上发表论文12(其中第一作者7篇)篇;出版图书《神经网络实用教程》、《数据挖掘:实用案例分析》、《MATLAB数据分析与挖掘实战》、《R语言数据分析与挖掘实战》、《Python数据分析与挖掘实战》 、《Hadoop大数据分析与挖掘实战》等专著24部 ,承担国家级项目1项,省部级项目4项。获得SAS、SPSS数据挖掘认证及Hadoop开发工程师证书。
张敏 广东泰迪科技高级数据分析师、培训总监,从事用户数据分析和数据挖掘工作六年,具有丰富的大数据挖掘理论及实践培训经验,对数据具有较高的敏感度,根据数据对其进行全面的统计分析。精通Python、R语言、Matlab等多种数据挖掘工具。擅长市场发展情况监控、精确营销方面的数据挖掘工作。有为南方电网、珠江数码等大型企业长期提供实施服务的经验,主导了电子商务网站用户行为分析及网页智能推荐服务、中医证型关联规则挖掘、电信业务话单量预测、航空公司客户价值分析等多个项目。2017年“泰迪杯数据挖掘挑战赛教练员培训”主讲讲师,2018年广东省Python与深度学习技术师资培训班主讲讲师,2018年第一/三/五期全国高校大数据核心技术与应用师资研修班主讲讲师、2019年第一/二/三期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北省电力系统培训班主讲讲师,2019年国家电网大数据竞赛湖南省电力系统培训班主讲讲师,先后负责过西安理工大学、广东工业大学、广西师范学院、广西科技大学、闽江学院、广东石油化工学院、上海健康医学院等高校实训课程及德生科技等企业内训和数据挖掘就业班的课程。组织、参与编写图书《Python编程基础》、《Python数据分析与应用》、《R语言编程基础》等。
杨惠 广东泰迪科技高级数据分析师,具备丰富的培训经验,曾为多家企业、院校服务过专业培训工作。如PPV商业培训、泰迪大数据师资培训、珠海城职院数据分析培训; 2018年第一、三、五期全国高校大数据核心技术与应用师资研修班主讲讲师、2019年第一、三、五期全国高校大数据与人工智能师资研修班主讲讲师,2019年国家电网大数据竞赛河北省电力系统培训班主讲讲师。从事数据挖掘工作五年,擅长文本挖掘及深度神经网络RNN,熟悉常用机器学习算法原理及应用,如神经网络、SVM、决策树、贝叶斯等算法;精通R、Python、MATLAB等常用数据挖掘处理工具。具有丰富的实践项目经验。如“京东电商产品评论情感分析”项目;“珠江数码大数据营销推荐应用”项目;“电子商务网站智能推荐服务”项目。
胡会娟 广东泰迪科技高级数据分析师,数据挖掘行业专业工作者,具备扎实的数学理论基础,擅长数据分析与挖掘建模;擅于对数据进行探索分析,发现数据规律,并依据数据建立模型,做出预测;精通Python、R、Spss、Excel等数据挖掘分析工具,擅长使用数据挖掘工具对进行数据处理与建模;熟悉分类、聚类、关联规则等多种机器学习算法,熟悉使用scikit-learn进行建模工作;先后参与过电力窃漏电用户识别项目、电子商务网站智能推荐等项目,负责过肇庆学院学生培训、数据挖掘就业班、2019年第四、五期全国高校大数据与人工智能师资研修班主讲讲师、2019年国家电网大数据竞赛河北省电力系统培训班主讲讲师,2019年国家电网大数据竞赛张家界、常德、怀化、吉首四市电力系统培训班主讲讲师、广东省大数据师资培训等课程。
报名材料及费用说明
费用:3900 元/人,包含(报名费、学习费、资料费、场地费及证书费)。食宿可选择统一安排,费用自理。
本次会议委托北京中九教育科技有限公司收取费用并开具发票。
证书颁发
学员经培训考试合格后,可以获得由工业和信息化部教育与考试中心颁发“高级大数据分析师”专项技术证书,证书可登录国家工信部考试中心官网查询,全国通用,该证书可作为教师岗位聘任、定级的参考。
相关会议
2024-12-15线上活动
2024-11-26苏州