会议详情 |
2019-03-28 08:30 至 2019-04-01 18:00
50人
推荐会议:2025大健康产业技术创新(昆明)论坛 暨中生协特医食品及生物活性肽工作委员会第三届年会
发票类型:增值税专用发票 增值税普通发票
参会凭证:现场凭电话姓名参会
第六期MATLAB机器学习与深度学习实践
技术应用培训班
(全程4天实操授课,核心编程技巧,MATLAB领域实用干货,现场答疑)
各企事业单位:
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。因此,为了帮助广大科研人员更加系统地学习深度学习的基础理论知识及对应的MATLAB代码实现方法,北京中科资环信息技术研究院特举办“MATLAB机器学习与深度学习实践技术应用培训班 ”旨在帮助学员掌握深度学习的基础知识,与经典机器学习算法的区别与联系,以及最新的迁移学习、强化学习、对抗生成网络等算法的基本原理及其MATLAB编程实现方法。本次培训采用“理论讲解+案例实战+动手实操+讨论互动”相结合的方式,抽丝剥茧、深入浅出分析深度学习在应用时需要掌握的经验及编程技巧。此外,本次培训还将通过实际案例的形式,介绍如何提炼创新点,以及如何发表高水平论文等相关经验。
一、组织机构:
主办单位:北京中科资环信息技术研究院
会议指定协办单位:北京中科硕博研计算技术中心
二、时间地点:
2019年3月28日—4月1日 浙江*杭州
(时间安排:第一天报到、授课四天)
三、培训目标:
1.掌握MATLAB基础编程及进阶提升方法
2.通过实操培训掌握各种编程技巧
3、熟练掌握MATLAB图像处理方法
4.掌握BP神经网络、极限学习机、支持向量机、决策树与随机森林、遗传算法等的基本原理
及其MATLAB代码实现方法
5.掌握最新的卷积神经网络、长短时记忆网络LSTM、迁移学习、强化学习等算法的基本原理及其MATLAB代码实现方法
四、主讲专家:
主要从事MATLAB 编程、机器学习与数据挖掘、数据可视化和软件开发、生理系统建模与仿真、生物医学信号处理,具有丰富的实战应用经验,主编《MATLAB智能算法30个案例分析》、《MATLAB神经网络43个案例分析》相关著作。已发表多篇高水平的国际学术研究论文。
五、培训对象:
各省市、自治区从事各行各业的机器学习、数据挖掘、图像处理等方向相关的企事业单位技术骨干、科研院所研究人员和大专院校相关专业教学人员及在校本科生、硕士和博士等相关人员,以及对机器学习、深度学习和MATLAB编程感兴趣的广大爱好者
六、颁发证书:
参加会议的学员可以获得《深度学习技术》专业技术培训证书。此证书作为个人学习和知识更
新、专业技能提升、单位人才聘用的参考依据。
注:请学员准备电子版:姓名+身份证号+2寸蓝底证件照片发给工作人员。
中科资环是在资源、环境等相关领域信息技术不断地发展的背景下正式成立。中科资环现今与院校和科研机构以及相关研究团队建立长期稳定的合作关系,这是中科资环持续发展重要的基础,也很好的搭建了各单位的信息互通以及相关领域合作,中科资环研究团队为推动资源、生态、环境的信息化发展提供重要的基础保障。 中科资环主要致力于在资源、生态、环境等信息领域的软件系统研发、项目合作、技术咨询、技术推广以及国内外相关主导软件代理等。中科资环已经组建完成生物、(水、大气)环境、农业、3s技术等领域信息发展中心。为更好的服务于各单位,中科资环成立环境系统模拟事业部、以及教育中心。中科资环下设各中心聘请多位教授、研究员等成为各中心的长期顾问专家,大幅度提高了中科资环的科研实力。
课程大纲
时间 |
授课方式 |
课程 |
主要内容 |
|
Day 1 |
08:30-09:00 |
课程简介 经验分享 |
第一章MATLAB 入门基础 |
1、到底应该如何学习编程?应该学习哪种编程语言?MATLAB过时了吗? 2、简单介绍 MATLAB 的安装、版本历史与编程环境(应该安装哪个版本的MATLAB?在哪些情况下需要时刻关注最新版本的MATLAB?) 3、MATLAB 基础操作:包括矩阵操作、逻辑与流程控制、函数与脚本文件、基本绘图等(浩如烟海的函数应该怎样记忆?矩阵最常用的五种索引操作是什么?MATLAB绘图功能真的比较弱吗?如何导出高质量的图像,以供满足SCI论文的要求?) 4、文件导入:mat、txt、xls、csv、jpg、wav、avi等格式(mat格式的文件是怎么生成的呢?为什么mat文件导入到workspace中会有各种各样名字的变量?) |
09:00-12:00 |
相关知识点复习与巩固 理论讲解与案例演示 实操练习 |
|||
13:30-15:30 |
理论讲解与案例演示 实操练习 |
第二章MATLAB 进阶与提高 |
1、MATLAB 编程习惯与风格(Cell模式和程序发布功能是什么?为什么代码中需要加入一些空格和空白行?MATLAB新版本中包含的Live Script是什么?) 2、MATLAB 调试技巧(MATLAB为什么会给出各种各样的错误信息?常见的错误信息有哪些?面对错误信息,应该是失落还是开心?如何使用断点调试工具?应该去哪些网站寻找答案?怎样能够让别人乐意帮助你解决问题?) 3、向量化编程与内存优化(怎样提升你的代码效率?MATLAB的内存管理机制是什么?为什么你的代码中会出现许多红色的下划波浪线?) 4、MATLAB深度学习工具箱介绍及所需的开发环境配置,Release Notes解读 |
|
|
15:30-18:00 |
理论讲解与案例演示 实操练习 |
第三章MATLAB 图像处理技术方法 |
1、图像的常见格式及读写(彩色图像、灰度图像、二值图像等) 3、图像直方图(图像的对比度、亮度等改变) 4、案例实践:基于手机摄像头的心率计算 |
Day 2 |
08:30-11:00 |
理论讲解与案例演示 实操练习 |
第四章 BP神经网络 |
1、BP神经网络的基本原理(人工智能发展过程经历了哪些曲折?人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?BP神经网络建模的本质是什么?) 2、BP神经网络的 MATLAB 实现(怎样划分训练集和测试集?为什么需要归一化?归一化是必须的吗?什么是梯度爆炸与梯度消失?MATLAB中BP神经网络的常用函数有哪些?如何使用?) 3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?) 4、值得研究的若干问题(欠拟合与过拟合、泛化性能评价指标的设计、样本不平衡问题等) 5、案例演示一:近红外光谱汽油辛烷值预测(回归拟合) 6、案例演示二:人脸朝向识别(分类识别) 7、实操练习 |
11:00-12:00 |
理论讲解与案例演示 实操练习 |
第五章:极限学习机(Extreme Learning Machine, ELM) |
1、ELM 的基本原理(ELM的基本算法,“极限”体现在哪些地方?) 2、ELM 与 BP 神经网络的区别与联系 3、案例实践:鸢尾花种类识别 |
|
13:30 – 15:30 |
理论讲解与案例演示 实操练习 知识点总结、延拓 |
第六章:支持向量机(Support Vector Machine, SVM) |
1、SVM的基本原理(什么是经验误差最小和结构误差最小?SVM的本质是解决什么问题?SVM的四种典型结构是什么?核函数的作用是什么?什么是支持向量?) 2、SVM扩展知识(如何解决多分类问题?SVM除了建模型之外,还可以帮助我们做哪些事情?) 3、LibSVM工具箱的安装与使用 4、案例实践一:乳腺癌肿瘤诊断 5、案例实践二:混凝土强度预测 |
|
15:30 – 18:00 |
理论讲解与案例演示 实操练习 知识点总结、延拓 课堂讨论 |
第七章:决策树与随机森林 |
1、决策树的基本原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系) 2、随机森林的基本原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”提现在哪些地方?随机森林的本质是什么?) 3、案例实践:乳腺癌肿瘤诊断 4、知识扩展:决策树除了建模型之外,还可以帮我们做什么事情?怎样解读随机森林的结果? |
|
Day 3 |
08:30 – 10:00 |
理论讲解与案例演示 实操练习 知识点总结、延拓 课堂讨论 |
第八章:遗传算法(Genetic Algorithm, GA) |
1、遗传算法的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?目前国内外的研究热点在哪些方面?) 2、常见遗传算法工具箱介绍(GAOT工具箱的添加与使用方法) 3、案例实践一:一元函数的寻优计算(极大值与极小值) 4、案例实践二:多元函数的寻优计算(遗传算法优化BP神经网络的初始权值与阈值) 5、案例实践三:离散变量的寻优计算(基于遗传算法的特征变量筛选) |
10:00 – 12:00 |
理论讲解与案例演示 实操练习 知识点总结、延拓 课堂讨论 |
第九章:变量降维与特征选择 |
1、变量降维与特征选择在概念上的区分 2、主成分分析(PCA)、偏最小二乘(PLS)的基本原理(PCA与PLS的区别与联系;PCA除了降维之外,还可以帮助我们做什么?) 2、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等) 3、案例实践:近红外光谱的降维与波长筛选 |
|
13:30 – 18:00 |
理论讲解与案例演示 实操练习 知识点总结、延拓 课堂讨论 |
第十章 深度学习入门基础与卷积神经网络 |
1、深度学习与传统机器学习的区别与联系(神经网络的隐含层数越多越好吗?深度学习与传统机器学习的本质区别是什么?) 2、深度学习开源工具箱简介(Python & MATLAB) 3、卷积神经网络的基本原理(什么是卷积核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?CNN提取的特征是怎样的?) 4、LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等典型深度神经网络的区别与联系解读 5、卷积神经网络参数调试技巧 6、案例演示一:11行代码实现深度学习物体识别 7、案例演示二:利用卷积神经网络抽取抽象特征 8、案例演示三:自定义卷积神经网络拓扑结构 9、实操练习 |
|
Day 4 |
08:30-10:00 |
理论讲解与案例演示 实操练习 |
第十一章 迁移学习算法 |
1、迁移学习算法的基本原理(为什么需要迁移学习?为什么可以迁移学习?迁移学习的基本思想是什么?) 2、常用的迁移学习算法简介(基于实例、特征和模型,譬如:TrAdaboost算法) 3、基于深度神经网络的迁移学习算法 4、案例演示 |
10:00-12:00 |
理论讲解与案例演示 实操练习 |
第十二章 长短时记忆网络LSTM |
1、LSTM神经网络的基本工作原理及MATLAB实现方法 2、案例演示一:时间序列预测(Time Series Forecasting) 3、案例演示二:序列-序列分类(Sequence-to-Sequence Classification) |
|
13:30-14:30 |
理论讲解与案例演示 实操练习 |
第十三章 强化学习 (增强学习) |
1、强化学习的基本思想与原理介绍 2、Q-Learning算法详解 3、深度强化学习介绍 4、案例演示 |
|
14:30-16:30 |
理论讲解与课题讨论 |
第十四章 深度学习热门研究方向 |
1、对抗生成网络(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?) 2、专题讨论:数据VS.模型,孰更重要?(模型泛化性能不好,究竟是孰之过?) |
|
16:30-17:30 |
理论讲解与案例演示 |
第十五章 科研与创新方法概述 |
1、如何查阅文献资料?(你会使用Google Scholar、Sci-Hub、ResearchGate吗?应该去哪些地方查找与论文配套的数据和代码?) 2、如何高效率撰写专业论文?(SCI不同分区的论文差别在哪些地方?你知道你的论文为什么显得很单薄吗?) 3、从审稿人的角度看,SCI期刊论文需要具备哪些要素?(审稿人关注的点有哪些?如何回应审稿人提出的意见?) 4、如何提炼与挖掘创新点?(如果在算法层面上难以做出原创性的工作,如何结合自己的实际问题提炼与挖掘创新点?) |
|
17:30-18:00 |
课堂讨论 复习与答疑 |
第十六章 讨论与答疑 |
1、建立微信群,便于后期的讨论与答疑 2、讨论与答疑,解答学员的实际问题 3、相关学习资料分享与拷贝(图书推荐、在线课程推荐等) |
培训费用:4300元(报名费、培训费、资料费、午餐费)住宿可统一安排,费用自理。
相关会议
2025-06-20深圳